Predictive Modeling of Student Engagement and Behavioral Outcomes Using Machine Learning Techniques in Technology-Enhanced Classrooms

Authors

  • Maduabuchukwu Augustine Onwuzurike Department of Business Administration, Lincoln University Oakland, California, USA Author
  • Stella Awo Kpogli School of Education, University of West Florida, Pensacola Florida, USA Author

DOI:

https://doi.org/10.32628/IJSRHSS2525135

Keywords:

Student engagement, Educational data mining, Machine learning in education, Behavioral outcome prediction, Technology-enhanced learning

Abstract

The rapid integration of digital technologies into educational environments has generated vast amounts of learner interaction data, creating new opportunities for data-driven insights into student engagement and behavioral outcomes. This review paper examines the application of machine learning techniques for predictive modeling of student engagement, academic behaviors, and learning trajectories in technology-enhanced classrooms. It synthesizes existing literature on data sources such as learning management systems, intelligent tutoring systems, classroom sensors, and educational software platforms, highlighting how these multimodal data streams enable fine-grained behavioral analysis. The paper critically evaluates supervised, unsupervised, and deep learning approaches including regression models, decision trees, ensemble methods, neural networks, and temporal models for predicting engagement patterns, dropout risks, and behavioral shifts. Attention is given to model interpretability, fairness, and ethical considerations, particularly in high-stakes educational decision-making. Furthermore, the review discusses how predictive insights can inform adaptive interventions, personalized learning pathways, and early-warning systems that support student success. By consolidating methodological advances, challenges, and future research directions, this study provides a structured foundation for researchers, educators, and policymakers seeking to leverage machine learning to enhance learning experiences and behavioral outcomes in digitally mediated educational settings.

Downloads

Download data is not yet available.

References

Abiodun, K., Alaka, E., Jinadu, S. O., Igba, E., & Ezeh, V. N. (2025). A review of federated learning approaches for predictive modeling and confidential data analysis. Finance & Accounting Research Journal, 7(3). https://doi.org/10.51594/farj.v7i3 DOI: https://doi.org/10.51594/farj.v7i6.1968

Abiodun, K., Jinadu, S. O., Alaka, E., Igba, E., & Ezeh, V. N. (2024). Risk-sensitive financial dashboards with embedded machine learning: A user-centric approach to operational transparency. International Journal of Scientific Research and Modern Technology, 3(2), 1–18. https://doi.org/10.38124/ijsrmt.v3i2.678 DOI: https://doi.org/10.38124/ijsrmt.v3i2.678

Agbaje, B. A., & Idachaba, E. (2018). Electricity consumption, corruption and economic growth: Evidence on selected African countries. International Journal for Innovation Education and Research, 6(4), 193–214. DOI: https://doi.org/10.31686/ijier.vol6.iss4.1023

Alruwais, N., & Zakariah, M. (2023). Student-engagement detection in classroom using machine learning algorithm. Electronics, 12(3), 731. DOI: https://doi.org/10.3390/electronics12030731

Aluso, L., & Enyejo, J. O. (2025). Multi-dimensional data visualization frameworks for executive decision-making in business intelligence dashboards. International Journal of Research Publication and Reviews, 6(11), 8047–8061. https://doi.org/10.55248/gengpi.06.1125.39100 DOI: https://doi.org/10.55248/gengpi.06.1125.39100

Aluso, L., & Enyejo, J. O. (2025). Using XGBoost and time-series forecasting to predict student academic trajectories in educational analytics platforms. International Journal of Innovative Science and Research Technology, 10(12). https://doi.org/10.38124/ijisrt/25dec159 DOI: https://doi.org/10.38124/ijisrt/25dec159

Anokwuru, E. A., & Enyejo, J. O. (2025). Predictive modeling for portfolio risk assessment in multi-therapeutic pharmaceutical enterprises. International Journal of Innovative Science and Research Technology, 10(11), 2354–2370. https://doi.org/10.38124/ijisrt/25nov1475 DOI: https://doi.org/10.38124/ijisrt/25nov1475

Apampa, A. R., Afolabi, O., & Eromonsei, S. O. (2024). Leveraging machine learning and data analytics to predict academic motivation based on personality traits in university students. Global Journal of Engineering and Technology Advances, 20(2), 026–060. https://doi.org/10.30574/gjeta.2024.20.2.0145 DOI: https://doi.org/10.30574/gjeta.2024.20.2.0145

Avevor, J., Adeniyi, M., Enyejo, L. A., & Aikins, S. A. (2024). Machine learning-driven predictive modeling for FRP strengthened structural elements: A review of AI-based damage detection, fatigue prediction, and structural health monitoring. International Journal of Scientific Research and Modern Technology, 3(8), 1–20. https://doi.org/10.38124/ijsrmt.v3i8.420 DOI: https://doi.org/10.38124/ijsrmt.v3i8.420

Ayinde, T. O., Adeyemi, F. A., & Ali-Balogun, B. A. (2022). Modelling oil price shocks and exchange rate behaviour in Nigeria – A regime-switching approach. OPEC Energy Review. https://doi.org/10.1111/opec.12263 DOI: https://doi.org/10.1111/opec.12263

Azonuche, T. I., & Enyejo, J. O. (2024). Exploring AI-powered sprint planning optimization using machine learning for dynamic backlog prioritization and risk mitigation. International Journal of Scientific Research and Modern Technology, 3(8), 40–57. https://doi.org/10.38124/ijsrmt.v3i8.448 DOI: https://doi.org/10.38124/ijsrmt.v3i8.448

Bhattacharya, S. (2025). How Explainable AI (XAI) Will Transform Higher Education https://www.linkedin.com/pulse/how-explainable-ai-xai-transform-higher-education-bhattacharya-n5fdc

Baker, R. S., Martin, T., & Rossi, L. M. (2016). Educational data mining and learning analytics. The Wiley handbook of cognition and assessment: Frameworks, methodologies, and applications, 379-396. DOI: https://doi.org/10.1002/9781118956588.ch16

Balogun, S. A., Ijiga, O. M., Okika, N., Enyejo, L. A., & Agbo, O. J. (2025). Machine learning-based detection of SQL injection and data exfiltration through behavioral profiling of relational query patterns. International Journal of Scientific Research and Modern Technology, 10(8). https://doi.org/10.38124/ijisrt/25aug324 DOI: https://doi.org/10.38124/ijisrt/25aug324

Bond, M., Bedenlier, S., Marín, V. I., & Händel, M. (2021). Emergency remote teaching in higher education: Mapping the first global online semester. International Journal of Educational Technology in Higher Education, 17(1), 1–24. https://doi.org/10.1186/s41239-020-00230-x DOI: https://doi.org/10.1186/s41239-021-00282-x

Divjak, B., Svetec, B., Horvat, D., & Kadoić, N. (2023). Assessment validity and learning analytics as prerequisites for ensuring student‐centred learning design. British journal of educational technology, 54(1), 313-334. DOI: https://doi.org/10.1111/bjet.13290

Du, X., Yang, J., Shelton, B. E., Hung, J. L., & Zhang, M. (2021). A systematic meta-review and analysis of learning analytics research. Behaviour & information technology, 40(1), 49-62. DOI: https://doi.org/10.1080/0144929X.2019.1669712

eSchool news, (2024). Use of Technology in the Classroom to Enhance Teaching and Learning https://www.eschoolnews.com/digital-learning/2024/09/26/use-of-technology-in-the-classroom-to-enhance-teaching-and-learning/

Fredricks, J. A., Filsecker, M., & Lawson, M. A. (2016). Student engagement, context, and adjustment: Addressing definitional, measurement, and methodological issues. Learning and Instruction, 69, 101326. https://doi.org/10.1016/j.learninstruc.2020.101326 DOI: https://doi.org/10.1016/j.learninstruc.2016.02.002

Fredricks, J. A., Reschly, A. L., & Christenson, S. L. (2019). Interventions for student engagement: Overview and state of the field. Educational Psychologist, 56(4), 257–273. https://doi.org/10.1080/00461520.2021.1963459

Hellas, A., Liao, S. N., Petersen, A., Vihavainen, A., & Berglund, A. (2018). Predicting academic performance: A systematic literature review. Computers & Education, 155, 103843. https://doi.org/10.1016/j.compedu.2020.103843

Henninger, M., Debelak, R., Rothacher, Y., & Strobl, C. (2023). Interpretable machine learning for psychological research: Opportunities and pitfalls. Psychological Methods. DOI: https://doi.org/10.31234/osf.io/xe83y

Hillmayr, D., Ziernwald, L., Reinhold, F., Hofer, S. I., & Reiss, K. M. (2020). The potential of digital tools to enhance mathematics and science learning in secondary schools: A context-specific meta-analysis. Computers & Education, 153, 103897. DOI: https://doi.org/10.1016/j.compedu.2020.103897

Hilton III, J. (2020). Open educational resources, student efficacy, and user perceptions: A synthesis of research published between 2015 and 2018. Educational technology research and development, 68(3), 853-876. DOI: https://doi.org/10.1007/s11423-019-09700-4

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. Educational Technology & Society, 23(1), 1–15.

Hummel, H. G., Nadolski, R. J., Eshuis, J., Slootmaker, A., & Storm, J. (2021). Serious game in introductory psychology for professional awareness: Optimal learner control and authenticity. British Journal of Educational Technology, 52(1), 125-141. DOI: https://doi.org/10.1111/bjet.12960

Igba, E., Ihimoyan, M. K., Awotinwo, B., & Apampa, A. K. (2024). Integrating BERT, GPT, Prophet algorithm, and finance investment strategies for enhanced predictive modeling and trend analysis in blockchain technology. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 10(6), 1620–1645. https://doi.org/10.32628/CSEIT241061214 DOI: https://doi.org/10.32628/CSEIT241061214

Ijiga, M. O., Olarinoye, H. S., Yeboah, F. A. B., & Okolo, J. N. (2025). Integrating behavioral science and cyber threat intelligence (CTI) to counter advanced persistent threats (APTs) and reduce human-enabled security breaches. International Journal of Scientific Research and Modern Technology, 4(3), 1–15. https://doi.org/10.38124/ijsrmt.v4i3.376 DOI: https://doi.org/10.38124/ijsrmt.v4i3.376

Ijiga, O. M., Idoko, I. P., Ebiega, G. I., Olajide, F. I., Olatunde, T. I., & Ukaegbu, C. (2024). Harnessing adversarial machine learning for advanced threat detection: AI-driven strategies in cybersecurity risk assessment and fraud prevention. Open Access Research Journals, 13(1). https://doi.org/10.53022/oarjst.2024.11.1.0060 DOI: https://doi.org/10.53022/oarjst.2024.11.1.0060

Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2021). Bridging STEM and cross-cultural education: Designing inclusive pedagogies for multilingual classrooms in Sub-Saharan Africa. IRE Journals, 5(1).

Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2021). Digital storytelling as a tool for enhancing STEM engagement: A multimedia approach to science communication in K-12 education. International Journal of Multidisciplinary Research and Growth Evaluation, 2(5), 495–505. https://doi.org/10.54660/.IJMRGE.2021.2.5.495-505 DOI: https://doi.org/10.54660/.IJMRGE.2021.2.5.495-505

Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2022). AI-powered e-learning platforms for STEM education: Evaluating effectiveness in low bandwidth and remote learning environments. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 8(5), 455–475. https://doi.org/10.32628/CSEIT23902187 DOI: https://doi.org/10.32628/CSEIT23902187

Injadat, M., Moubayed, A., Nassif, A. B., & Shami, A. (2020). Systematic ensemble model selection approach for educational data mining. Knowledge-Based Systems, 200, 105992. DOI: https://doi.org/10.1016/j.knosys.2020.105992

James, U. U. (2022). Machine learning-driven anomaly detection for supply chain integrity in 5G industrial automation systems. International Journal of Scientific Research in Science, Engineering and Technology, 9(2). https://doi.org/10.32628/IJSRSET22549 DOI: https://doi.org/10.32628/IJSRSET22549

Umoren, J., Ajayi-kaffi, O. & Kaise, F. (2025). An analytical framework for digital transformation in healthcare product supply chains International Journal of Science and Research Archive. 14(1):1920-193 https://doi.org/10.30574/ijsra.2025.14.1.0190 DOI: https://doi.org/10.30574/ijsra.2025.14.1.0190

Joksimović, S., Kovanović, V., & Dawson, S. (2019). The journey of learning analytics. Computers & Education, 166, 104183. https://doi.org/10.1016/j.compedu.2021.104183

Kizilcec, R. F., & Lee, H. (2020). Algorithmic fairness in education. Educational Technology Research and Development, 68(4), 1921–1937. https://doi.org/10.1007/s11423-020-09789-w

Korsgaard, D., Bjorner, T., Sorensen, P. K., & Burelli, P. (2023). Creating user stereotypes for persona development from qualitative data through semi-automatic subspace clustering. arXiv preprint arXiv:2306.14551.

Kovanović, V., Gašević, D., Dawson, S., Joksimović, S., & Baker, R. S. (2015). Does time-on-task estimation matter? Implications for learning analytics. Journal of Learning Analytics, 7(3), 1–19. https://doi.org/10.18608/jla.2020.73 DOI: https://doi.org/10.18608/jla.2015.23.6

Kumar, A., Islam, T., Sekimoto, Y., Mattmann, C., & Wilson, B. (2020). Convcast: An embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data. Plos one, 15(3), e0230114. DOI: https://doi.org/10.1371/journal.pone.0230114

Lakkaraju, H., Aguiar, E., Shan, C., Miller, D., Bhanpuri, N., Ghani, R., & Addison, K. (2015). A machine learning framework to identify students at risk of adverse academic outcomes. Proceedings of the ACM on Human-Computer Interaction, 4(CSCW2), 1–31. DOI: https://doi.org/10.1145/2783258.2788620

Latifi, S., Noroozi, O., & Talaee, E. (2021). Peer feedback or peer feedforward? Enhancing students’ argumentative peer learning processes and outcomes. British Journal of Educational Technology, 52(2), 768-784. DOI: https://doi.org/10.1111/bjet.13054

Li, X., Zhang, Y., Cheng, H., Zhou, F., & Yin, B. (2021). An unsupervised ensemble clustering approach for the analysis of student behavioral patterns. Ieee Access, 9, 7076-7091. DOI: https://doi.org/10.1109/ACCESS.2021.3049157

Mehrabi, N., et al. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), 1–35. https://doi.org/10.1145/3457607 DOI: https://doi.org/10.1145/3457607

Nguyen, L. T., & Tuamsuk, K. (2022). Digital learning ecosystem at educational institutions: A content analysis of scholarly discourse. Cogent Education, 9(1), 2111033. DOI: https://doi.org/10.1080/2331186X.2022.2111033

Ogwuche, A. O. (2024). Assessing the impact of religious extremism on educational progress in Nigeria through a comparative study of geopolitical zones. International Journal of Scientific Research in Science and Technology, 11(6). https://doi.org/10.32628/IJSRST24116199 DOI: https://doi.org/10.32628/IJSRST24116199

Ogwuche, A. O. (2024). Exploring the effects of funding on educational outcomes through a comparative study of public schools in Nigeria, Canada, and Indonesia. International Journal of Scientific Research in Humanities and Social Sciences. https://doi.org/10.32628/IJSRHSS24211 DOI: https://doi.org/10.32628/IJSRHSS24211

Ojuolape, A. M., Ajibola, A., Agbaje, B. A., & Yusuf, H. A. (2017). Economic evaluation of Nigeria’s quest for new petroleum refineries. Ilorin Journal of Business and Social Sciences, 19(1), 248–266.

Okoh, O. F., Fadeke, A. A., Ogwuche, A. O., & Adeyeye, Y. (2024). The role of educational leadership in enhancing health literacy and implementing school-based mental health programs. International Journal of Advance Research Publication and Reviews, 1(2).

Oloko, T. F., Isah, K. O., & Ali-Balogun, B. A. (2025). Can conventional stocks finance climate change? DOI: https://doi.org/10.1016/B978-0-44-313776-1.00072-6

Ononiwu, M., Azonuche, T. I., Okoh, O. F., & Enyejo, J. O. (2023). Machine learning approaches for fraud detection and risk assessment in mobile banking applications and fintech solutions. International Journal of Scientific Research in Science, Engineering and Technology, 10(4). https://doi.org/10.32628/IJSRSET232531 DOI: https://doi.org/10.32628/IJSRSET232531

Pamies, C., Pérez-Nievas, S., Vintila, D., & Paradés, M. (2021). Descriptive political representation of Latin Americans in Spanish local politics: Demographic concentration, political opportunities, and parties’ inclusiveness. American Behavioral Scientist, 65(9), 1234-1250. DOI: https://doi.org/10.1177/0002764221996755

Paulsen, L., & Lindsay, E. (2024). Learning analytics dashboards are increasingly becoming about learning and not just analytics-A systematic review. Education and Information Technologies, 29(11), 14279-14308. DOI: https://doi.org/10.1007/s10639-023-12401-4

Piech, C., et al. (2015). Deep knowledge tracing. Journal of Educational Data Mining, 12(2), 1–31.

Raimondo, E. (2020). Getting practical with causal mechanisms: the application of process‐Tracing under real‐world evaluation constraints. New directions for evaluation, 2020(167), 45-58. DOI: https://doi.org/10.1002/ev.20430

Santos, K. J. D. O., Menezes, A. G., de Carvalho, A. B., & Montesco, C. A. (2019, July). Supervised learning in the context of educational data mining to avoid university students dropout. In 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT) (Vol. 2161, pp. 207-208). IEEE. DOI: https://doi.org/10.1109/ICALT.2019.00068

Shi, Y., Tong, M., & Long, T. (2021). Investigating relationships among blended synchronous learning environments, students’ motivation, and cognitive engagement: A mixed methods study. Computers & Education, 168, 104193. DOI: https://doi.org/10.1016/j.compedu.2021.104193

Smith, O. (2025). Cultural contexts in English language teaching: Balancing global standards with local relevance. IOSR Journal of Humanities and Social Science, 30(10), 16–28.

Smith, O. (2025). El inglés como mejora para la carrera profesional y empresarial local e internacional. Ciencia Latina Revista Científica Multidisciplinar, 9(5), 5038–5056. https://doi.org/10.37811/cl_rcm.v9i5.19839 DOI: https://doi.org/10.37811/cl_rcm.v9i5.19839

Smith, O. (2025). English education and global citizenship: Preparing learners for a multilingual, interconnected world. IOSR Journal of Humanities and Social Science, 30(10), 8–15.

Sun, W., Zhang, X., Li, M., & Wang, Y. (2023). Interpretable high-stakes decision support system for credit default forecasting. Technological Forecasting and Social Change, 196, 122825. DOI: https://doi.org/10.1016/j.techfore.2023.122825

Sweeney, M., Rangwala, H., & Lester, J. (2016). Next-term student performance prediction: A recommender systems approach. Journal of Educational Data Mining, 13(2), 1–22.

Ukpe, I. E., Atala, O., & Smith, O. (2023). Artificial intelligence and machine learning in English education: Cultivating global citizenship in a multilingual world. Communication in Physical Sciences, 9(4).

Vasalou, A., Benton, L., Ibrahim, S., Sumner, E., Joye, N., & Herbert, E. (2021). Do children with reading difficulties benefit from instructional game supports? Exploring children's attention and understanding of feedback. British journal of Educational technology, 52(6), 2359-2373. DOI: https://doi.org/10.1111/bjet.13145

Wise, A. F., & Jung, Y. (2019). Teaching with analytics: Towards a situated model of instructional decision-making. Educational Technology Research and Development, 69(1), 417–437. https://doi.org/10.1007/s11423-020-09815-x

Wu, Z., Zhan, M., Zhang, H., Luo, Q., & Tang, K. (2022). MTGCN: A multi-task approach for node classification and link prediction in graph data. Information Processing & Management, 59(3), 102902. DOI: https://doi.org/10.1016/j.ipm.2022.102902

Yan, L., Whitelock‐Wainwright, A., Guan, Q., Wen, G., Gašević, D., & Chen, G. (2021). Students’ experience of online learning during the COVID‐19 pandemic: A province‐wide survey study. British journal of educational technology, 52(5), 2038-2057. DOI: https://doi.org/10.1111/bjet.13102

Yoon, M., Lee, J., & Jo, I. H. (2021). Video learning analytics: Investigating behavioral patterns and learner clusters in video-based online learning. The internet and higher education, 50, 100806. DOI: https://doi.org/10.1016/j.iheduc.2021.100806

Zainuddin, Z., Shujahat, M., Haruna, H., & Chu, S. K. W. (2020). The role of gamified e-quizzes on student learning and engagement: An interactive gamification solution for a formative assessment system. Computers & education, 145, 103729. DOI: https://doi.org/10.1016/j.compedu.2019.103729

Downloads

Published

10-11-2025

Issue

Section

Research Articles

How to Cite

[1]
Maduabuchukwu Augustine Onwuzurike and Stella Awo Kpogli, “Predictive Modeling of Student Engagement and Behavioral Outcomes Using Machine Learning Techniques in Technology-Enhanced Classrooms”, Int J Sci Res Humanities and Social Sciences, vol. 2, no. 6, pp. 58–79, Nov. 2025, doi: 10.32628/IJSRHSS2525135.